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ABSTRACT

Misidentification and contamination of biobank sam-
ples (e.g. cell lines) have plagued biomedical re-
search. Short tandem repeat (STR) and single-
nucleotide polymorphism assays are widely used to
authenticate biosamples and detect contamination,
but with insufficient sensitivity at 5–10% and 3–5%,
respectively. Here, we describe a deep NGS-based
method with significantly higher sensitivity ( 1%). It
can be used to authenticate human and mouse cell
lines, xenografts and organoids. It can also reliably
identify and quantify contamination of human cell
line samples, contaminated with only small amount
of other cell samples; detect and quantify species-
specific components in human–mouse mixed sam-
ples (e.g. xenografts) with 0.1% sensitivity; detect
mycoplasma contamination; and infer population
structure and gender of human samples. By adopt-
ing DNA barcoding technology, we are able to profile
100–200 samples in a single run at per-sample cost
comparable to conventional STR assays, providing a
truly high-throughput and low-cost assay for building
and maintaining high-quality biobanks.

INTRODUCTION
Cell lines, organoids, and xenograft and homograft models
are useful model systems in oncology and other biomedical
research. Model authentication and characterization helps
their proper utilization and alleviates a series of problems
such as misidentification and misuse, cross-contamination,
erroneous cancer classification, undetected genomic change
due to longtime culture and genetic drift, which are all well
noted especially in cell lines due to their popular use (1–
8). For example, various studies have reported 10–40%
misidentification/contamination rates for cell line banks (9–
17).

A number of methods have been reported for authenticat-
ing cell lines, including examining cell morphology, isoen-
zymology, cytogenetic analysis (karyotyping and fluores-
cence in situ hybridization), human lymphocyte antigen typ-
ing, short tandem repeat (STR) profiling, single-nucleotide
polymorphism (SNP) typing, and DNA and RNAsequenc-
ing (RNA-seq) (18,19). Among these technologies, STR
profiling has been most widely used and there is an STR
standard (ASN-0002) for guiding human cell line authen-
tication (20). A panel of 19 STR markers for mouse cell
lines was also developed (21). The sensitivity of STR assays
for detecting contaminants is 5–10% (8). In recent years,
SNP typing has been increasingly used for cell line and
biosample authentication owing to its improved accuracy,
sensitivity and reduced cost (8,22–29). Current SNP assays
have detection sensitivity at 3–5% (8,30,31). There are also
databases with STR, SNP and other information for cell
lines to facilitate their authentication and characterization
(8,32–34).
However, STR and SNP assays have several limita- tions:

(i) they are low-throughput and labor-intensive meth- ods,
and therefore are costly and cumbersome to use for
authenticating large batches of samples; (ii) their ability in
detecting contamination can be much lower than the com-
monly claimed sensitivity; for example, a>20% contamina-
tion was not detected in a mixture of two unrelated cell lines
by a 96-SNP assay (27); and (iii) they are monofunctional
assays, and we need to use other assays for, say, checking
mycoplasma contamination. All these shortcomings call for
better approaches, especially for large biobanks with many
different types of biosamples that bring in additional com-
plications, as elaborated below.
Besides cell lines, organoids and mouse tumor models are

widely used in oncology research and drug development.
Organoids are in vitro three-dimensional cultures deriving
from stem cells, primary and engineered tumor samples,
and xenografted human tumors that maintain many organ
structures and functions (35). Mouse tumor models are in
vivo systems including patient-derived xenografts (PDXs),
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cell line-derived xenografts, syngeneic or mouse cell line-
derived models, mouse homograft models, etc. Some of
these models, such as PDXs, more faithfully capture pri-
mary tumor histopathology and genomics than cell lines
(36–39). Like cell lines, these tumor models have similar
quality control issues, but there are also additional prob-
lems. In xenograft models, tumors contain human tumor
cells and mouse stromal cells, the latter gradually replac-
ing human counterparts during the passaging of models
(40), which, when compounded with genomic heterogene-
ity, implantation site differences (subcutaneous and ortho-
topic), growth variation and dissection randomness, makes
the human–mouse genetic composition of tumors from
even the same PDX differ considerably, to the extent that
some samples are nearly pure human or mouse content.
Such tumor–host mixing and interference occurs with all
implanted tumor models, causing fluctuation of allele fre-
quencies for STR markers and SNPs, therefore adversely
impacting traditional STR- and SNP-based authentication
methods. Large-scale sample authentication is also a logis-
tic burden and error-prone, especially for biobanks where
many kinds of in vitro and in vivomodels are simultaneously
maintained and used.
In this article, we report a deep NGS-based multifunc-

tional assay that simultaneously solves all these problems.
This assay can (i) authenticate and characterize hundreds
of samples in a single run, (ii) authenticate all kinds of hu-
man and mouse samples, including cell lines, xenografts,
organoids, mouse tumor models and clinical samples, (iii)
detect mycoplasma contamination, (iv) estimate mouse per-
centage in mouse–human mixed samples such asxenograft
tumors, (v) analyze genetic admixture and population struc-
ture of human samples and (vi) infer gender for human
samples. It should be noted that this assay is more suit-
able for large-scale sample authentication, as commonly
performed in biobanks or centered facilities, while conven-
tional STR/SNP assays are still a convenient tool for spo-
radic sample check.

MATERIALS AND METHODS
Nucleic acid extraction
Genomic DNA from cells, PDXs and PDX-derived
organoids (PDXOs) was purified using DNeasy Blood &
Tissue Kit (QIAGEN, Valencia, CA, Cat. 69506) accord-
ing to the manufacturer’s instructions. DNA integrity was
determined by 2100 Bioanalyzer (Agilent) and quantified
using NanoDrop (Thermo Scientific). One aliquot of high-
quality DNA sample (OD260/280 1.8–2.0, OD260/230
2.0,>1µg) was used for deep NGS sequencing andWES

sequencing. Total RNA from cells, PDXs and PDXOs was
purified using RNeasy Mini Kit (QIAGEN, Cat. 74106) ac-
cording to the manufacturer’s instructions. Integrity of the
total RNA was determined by 2100 Bioanalyzer (Agilent)
and quantified using NanoDrop (Thermo Scientific). One
aliquot of high-quality RNA sample (OD260/280 1.8– 2.2,
OD260/230 2.0, RIN 8.0, >1 µg) was used for deep
NGS sequencing and RNA-seq.

Cell line mixture preparation
A cell line mixture was prepared by mixing cells from two
cell lines with given ratios. Based on cell growth rate, cells
were seeded in 15 ml medium in T75 that allowed cell con-
fluence to reach 60–80%, followed by overnight incuba-
tion in a CO2 water-jacketed incubator (SANYO). Cells
were harvested during the logarithmic growth period, and
counted with a hemocytometer (Chongguang) for the calcu-
lation of concentration. Cells from two cell lines were then
mixed according to predefined ratios to create a cell line
mixture that was subsequently centrifuged at 3000 rpm for 5
min. Supernatant was aspirated and cell pellets were stored
at−20◦C for DNA extraction.

Human–mouse DNA mixture preparation
Serial dilutions of mouse–human DNA mixturebenchmark
samples were prepared by mixing mouse spleen DNA and
human genomic DNA (Thermo Scientific, Cat. 4312660).
Mouse spleen DNA was purified using DNeasy Blood &
Tissue Kit (QIAGEN, Cat. 69506) according to the manu-
facturer’s instructions and quantified using the NanoDrop
(Thermo Scientific). Mouse spleen DNA and human ge-
nomic DNA were diluted to 200 ng/µl, and then mixed by
predefined mouse ratios, including 90%, 80%, 70%, 50%,
30%, 20%, 10%, 7%, 5% and 0%. The DNA mixture was
used for the deep NGS sequencing later. To further assess
the NGS assay’s sensitivity in detecting mouse content in
human samples, a second series of mouse–human DNA
mixture benchmark samples was prepared by mixing mouse
genomic DNA (Promega, G3091) and human lymphoma
cell lineK562genomicDNA(Promega,E4931).Mouse and
human DNA were diluted to 40 ng/µl, and then mixed by
predefined mouse ratios, including 80%, 40%, 20%, 10%,
5%, 2.50%, 1.25%, 0.63%, 0.31% and 0.16%.

Barcode deep NGS sequencing
Multiplex PCR was used to prepare target sequencing li-
braries for Illumina sequencers with a paired-end read
length of 150 bp (pE150). The NGS deep sequencing cov-
ered 630 amplicons, sizes of which ranged from 160 to 260
bp. Genomic DNA was amplified using IGT-EM808 poly-
merase mixture (iGeneTech Bioscience Co., Ltd; 95◦C for 3
min 30 s, 18 cycles of incubation at 98◦C for 20 s and 60◦C
for 8 min, hold at 72◦C for 5 min) and then purified by AM-
Pure XP beads (Beckman, Cat. A63881).
Barcoding was executed by a second round of amplifica-

tion. Briefly, purified target amplicons were taken as tem-
plates and added with upstream IGT-I5 index (10 µM),
downstream IGT-I7 index (10 µM) and polymerase mix-
ture for the PCR reaction. The mixture was then placed in a
thermal cycler for amplification with the following settings:
95◦C for 3min 30 s, nine cycles of incubation at 98◦C for 20 s,
58◦C for 1 min and 72◦C for 30 s, hold at 72◦C for 5 min. The
barcoded library was then purified by using AMPure XP
beads (Beckman, Cat. A63881).
After library construction, Qubit 3.0 Fluorometer ds-

DNA HS Assay (Thermo Fisher Scientific) was used to
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quantify concentrations of the resulting sequencing li-
braries. 2100 Bioanalyzer (Agilent) was used to analyze size
distribution ranging from 280 to 420 bp. Paired-end se-
quencing was performed using an Illumina system follow-
ing Illumina-provided protocols for 2 150 bp paired-end
sequencing.

RNA-seq and WES sequencing
In RNA-seq, the mRNA-focused sequencing libraries were
constructed from total RNA. PolyA mRNA was purified
from total RNA using oligo-dT-attached magnetic beads
and then fragmented by fragmentation buffer. Using the
short fragments as templates, first-strand cDNA was syn-
thesized using reverse transcriptase and random primers,
followed by second-strand cDNA synthesis. The synthe-
sized cDNA was then subjected to end repair, phosphoryla-
tion and ‘A’ base addition according to the library construc-
tion protocol. Following this, sequencing adapters were
added to both ends of the cDNA fragments. After PCR
amplification for cDNA fragments, the targeted 250–350
bp fragments were cleaned up. After library construction,
Qubit 3.0 Fluorometer dsDNA HS Assay (Thermo Fisher
Scientific) was used to quantify concentrations of the result-
ing sequencing libraries, while the size distribution was ana-
lyzed using 2100Bioanalyzer (Agilent).After library valida-
tion, Illumina cBOT cluster generation system with HiSeq
PE Cluster Kits (Illumina) was used to generate clusters.
Paired-end sequencing was performed using an Illumina
system following Illumina-provided protocols for 2 × 150

and CAL27 and Raji. Each pair has 26 samples including
the two pure cell lines and three replicates for eight mix ra-
tios by cell count (Supplementary Table S1). The second set
had 22 cell lines each contaminated by a known second cell
line by a mostly small but unspecified ratio (Supplementary
Table S2).

Estimating heterogeneity ratios
There are six informative genotype combinations that can
be used to estimate heterogeneity ratios from the deep NGS
sequencing data (Table 1). They exhibit four distinct nu-
cleotide frequency patterns. Combinations 1 and 2generate
the same pattern, and we used an average formula to calcu-
late the percentage of the minor component S2, or the het-
erogeneity ratio. The formula produced an exact estimate
of the ratio when the two combinations occur with equal
frequency, a scenario that should be closely approximated
when the number of SNPs is large. A similar averaging ap-
proach is used for combinations 4 and 5. When the hetero-
geneity ratio is low, sequencing error may interfere the in-
ference of heterogeneity ratio. To alleviate this, we used a
two-step statistical procedure. Assuming sequencing error
is e 0.001 and the sequencing depth is n (n 500, any SNP
with n< 500 is discarded) at a given SNP site, the probabil-
ity of observing k erroneous nucleotides follows a binomial
distribution with parameters n and e:

f (k, n, e) =
.
n
Σ
ek(1− e)n−k.

paired-end sequencing.
WES was performed by Wuxi Nextcode Co. Ltd. (Shang-

hai, China). Briefly, genomic DNA was extracted and frag-
mented to an average size of 180–280 bp. DNA libraries
were generated by Illumina’s manufacturer paired-endpro-
tocols. Exons were captured by Agilent SureSelect Human
All Exon V6, and subsequently sequenced by the Illumina
NovaSeq platform (Illumina Inc., San Diego, CA, USA) to
generate 150 bp paired-end reads.

SNP selection and profiling
We selected 200 SNPs for human sample authentication
by several criteria: (i) SNPs are in exons; (ii) SNPs are lo-
cated on all 22 autosomes and are sufficiently away from
each other since chromosome abnormality, including dele-
tions and duplications of large chromosome segments, is
common in tumors; and (iii) SNPs are in highly expressed
genes. Of the 200 SNPs, 132 were categorized in the Inter-
national HapMap Project (41). We added another 13 SNPs
also in the HapMap catalog (release 3), so a total of 145
SNPs were used for population structure analysis based on
three reference populations, namely Han Chinese (CHB),
Nigeria Yoruba (YRI) and Utah residents with Northern
and Western European ancestry from the CEPH collection
(CEU).

Benchmark samples and data
Two cell line benchmark sample sets were prepared. The
first set had 78 samples for three pairs of cell lines, includ-
ing PANC-1 and RT4, MV-4-11 and ‘LNCaP clone FGC’,

For each n, we calculated the cumulative density func-
tion and obtained a threshold h so that the probability of
observing more than h erroneous nucleotides out of the n
nucleotides was <0.01. In the sequencing data, any low-
frequency nucleotide with number of reads smaller than a
corresponding threshold h was discarded. We then used an
expectation–maximization algorithm [package mclust in R,
version 3.5.3 (42)] to estimate parameters of a Gaussian
mixture (with one to three components) that models the
distribution of nucleotide frequencies smaller than a maxi-
mal heterogeneity (0.2 used for all samples in this study). If
there was only a single Gaussian component or the Gaus-
sian component with smallest mean accounted for >60%
of all data points, median of all data points was taken as
the sample heterogeneity ratio; otherwise, median of data
points in the other Gaussian component(s) was taken as the
sample heterogeneity ratio.

Determining major component of a sample
The genotype at an SNP site was determined using only
nucleotides with allele frequencies larger than a threshold,
10% for reference samples and 25% for test samples that
may be contaminated. The genotype similarity between a
reference sample and a test sample was the percentage of
SNPs with identical genotypes, excluding SNPs with se-
quencing depth <500 in the test sample. The major com-
ponent of the test sample was the reference sample with the
highest genotype similarity, which must be>90% (or 80%)
if the heterogeneity ratio of the test sample was <10% (or
>10%). Otherwise, no major component was called.
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Table 1. Six informative genotype combinations to estimate heterogeneity/contamination ratioa

Combination 1 2 3 4 5 6

S1 genotype AA AA AA AT AT AT
S2 genotype TT AT TG GG AG GC
S2 ratio (SNP heterogeneity T/(A + T)b 2T/(A + T)b (T + G)/(A +T+ G) G/(A +T+ G)c 2G/(A +T+ G) (G+ C)/(A + T +G + C)
ratio)
Nucleotide frequency pattern Large A, Large A, Large A, small T and G Large A and T, Large A and T, Large A and T, small G and

small T small T small G small G C

aS1 is the major component and S2 is the minor/contaminating component in the mixed sample. Each combination uses specific nucleotides to represent a class of combinations;
for example, the first combination denotes that both are homozygous genotypes with different nucleotides. In the formulas for calculating S2 ratio, a nucleotide denotes its count
(total number of reads) in NGS sequencing data.
bCombinations 1 and 2 cannot be distinguished from observed NGS data, so 1.5T/(A + T) is used for both.
cCombinations 4 and 5 cannot be distinguished from observed NGS data, so 1.5G/(A + T + G) is used for both.

Determining minor component of a sample
After the estimation of heterogeneity ratio and determina-
tion of major component, we determined the minor compo-
nent of a test sample. For a mixture of the major component
and one of the other reference samples (e.g. all cell lineswith

From sequencing data of the mix sample, we denoted
the actual occurrences of the four nucleotides as x
(nA, nT, nG, nC). The likelihood of such observation is

L (θ |x) = Pθ (x)

genomic data), we obtained a chimeric genotype, withpos-
sibly one to four nucleotides, at every SNP site. Frequencies

= const ×
M∈{A,T,G,C}

(θM1 + (1− θ )M2)nM.

of nucleotides were calculated using the heterogeneity ratio. The likelihood P (x ) can be calculated for any SNP i ∈
Similarly, we defined the chimeric genotype of the test sam-

(1
θ i

ple. The two chimeric genotypeswere considered identical if
they harbored the same nucleotides and frequencies of each
nucleotide were within 3-fold. We then calculated the geno-
type similarity between the test sample and each reference
sample combined with the major component. The set of all
pairwise genotype similarities was then fitted by a beta dis-
tribution with parameters (α, β):

f (x, α,β) =
T (α + β)

xα−1(1 − x)β−1.

,2,..., n) with observed data xi; the likelihood of observ-
ing data X = (x1, x2,..., xn) for all SNPs is

n

L (θ |X) = const × Pθ (xi) .
i =1

The log likelihood is therefore

log L (θ |X) =
.

log P (x ) .

In this equation, T(α) is the gamma function and x is
genotype similarity. Its parameters were estimated by pack-
age fitdistrplus in R (version 3.5.3). From the fitted beta
distribution, we then calculated the probability of observ-
ing any genotype similarity larger than a specific value.
A quantile–quantile graph with 99% confidence band was
plotted for all observed genotype similarities for visualiza-
tion. A reference sample was considered the minorcompo-
nent if (i) it had the highest genotype similarities, (ii) its
genotype similarity was above the 99% confidence upper
bound in the quantile–quantile graph and (3) its P-value
was <1.0E−6 in the fitted beta distribution.

Estimating mixture ratio of two cell lines
Weused cell lines to explain the estimation of mix ratio for

two reference samples. Assume that two cell lines S1 and S2
were mixed with ratio θ for S1 and (1 θ ) for S2, where 0

θ 1. From deep NGS sequencing data, we accurately
estimated nucleotide frequencies of all n SNPs in both cell
lines. For an SNP, we denoted its four nucleotide frequen-

cies, which sum to 1, as A1, T1, G1, C1 for cell line S1 and A2,
T2, G2, C2 for cell line S2. In principle, one of the fre-

quencies is close to 1 if the SNP is homozygous, and two
frequencies are both close to 0.5 if the SNP is heterozygous.
Actual data may have some deviations due to sequencing er-
rors and randomness, as well as multiclonality of cell lines.

i =1

We then solved for θ that maximized the likelihood by
stepwise increment of θ . The above procedure can also be
used for a mixture of any two human samples.

Simulation of cell line mixture for contaminant detection
A simulation was performed for three cell line pairs includ-
ing PANC-1 and RT4, MV-4-11 and ‘LNCaP clone FGC’,
and CAL27 and Raji. All six cell lines were profiled by deep
NGS sequencing to obtain their SNP fingerprints. Two cell
lines in a pair were mixed in silico where the ratio of the
first cell line was r, and r takes the following values: 0.15%,
0.30%, 0.625%, 1.25%, 2.5%, 5%, 10%, 15% and 20%. For
each SNP site, we obtained r n nucleotides from the first
cell line where nwas a random integer from 500 to 5000; we
further distributed r n into four nucleotides (A, T, G, C)
according to their frequencies in the first cell line. Similarly,
we obtained (1 r ) n nucleotides from the second cell line.
We then reversed the ratio, so a symmetric sampling was
done with ratio r for the second cell line.

Estimating mouse ratio from RNA-seq and WES datasets
Sequencing reads were mapped to human reference (hg19)
and mouse reference (mm10) genomes using mapping tools
STAR (43) for RNA-seq data and BWA (44) for WES data
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with default parameters. If a read was only mapped to a hu-
man genome, or had fewer mismatches to a human genome
than to a mouse genome, it was classified as a human read.
Mouse reads were similarly assigned. If a read was mapped
to both genomes with a close number of mismatches, off by
at most 2, the read was unclassifiable and discarded. The
mouse ratio was the proportion of mouse reads out of all
kept reads.

RESULTS
Humansampleauthenticationandcontaminationdetection
SNP profiling and fingerprint. A panel of 200 SNPs was
selected for authenticating human samples, including cell
lines, xenografts and organoids (Supplementary Figure S1
and Supplementary Table S3). SNPs were profiled by deep
NGS sequencing with an average depth of 3000 . Each
sample has a unique SNP fingerprint consisting of bothnu-
cleotide identities and frequencies for each of the SNPs. It
should be emphasized that a cell line can have fluctuating
SNP fingerprints between passages and among biobanks
due to genetic drift and heterogeneity (45), so a current SNP
fingerprint can be profiled for better curation. The SNP fin-
gerprints can be generated, with reduced precision, by rela-
tively low-depth NGS data. In this study, we generated SNP
fingerprints for 1055 cell lines from RNA-seq data profiled
by us and CCLE (46), which serve as references (Supple-
mentary Data S1).
We illustrated the authentication, characterization, and

intraspecies and interspecies contamination detection using
SNP profiling data from deep NGS sequencing for 217 cell
line samples, 220 PDX samples and 31 PDXO samples. For
the cell line samples, there are 72 mixtures of two cell lines
with known mix ratios from serial dilutions and six corre-
sponding pure cell lines (Table 2, Supplementary Table S1),
22 mixtures of two cell lines with unknown mix ratios (Ta-
ble 3, Supplementary Table S2) and 117 unmixed cell lines
(Supplementary Table S4).

Authentication of human samples. The identity of a sam-
ple, or the major component of a contaminated sample, is
determined by its genotype similarity to a library of refer-
ence samples. From 217 tested cell line samples, genotype
similarities between the same cell lines are always >90%
with an average of 98.6%; the lowest genotype similarity is
91.7% for an A-875 cell culture with 16.7% contamination
of JEG-3 (Figure 1A and Table 3). In contrast, genotype
similarities between unrelated cell lines are almost always
below 50%. Still there are cell lines that are closely related
or in the same synonymous group for various reasons, in-
cluding mislabeling, contamination, deriving from the same
patient, one cell line being parental to another, etc. (8) For
example, HCT-15 and HCT-8 were likely derived from the
same patient (47); QGY-7701 is contaminated and a HeLa
derivative (48). Genotype similarities for 16 such cell line
pairs in our dataset range from 84% to 96% (Supplemen-
tary Table S5). These cell line pairs can be distinguished,
except for almost identical ones such as HLE and HLF.
Genotype similarities between the same models on average
are 98.0% (87.2–100%) for 220 PDXand 31 PDXOsamples,
and nearly all are below 50% between different models.

Estimation of genetic heterogeneity using ‘informative
SNPs’. If a sample is uncontaminated and is purely mon-
oclonal diploid, then an SNP site is either homozygous
or heterozygous, and the observed nucleotide frequency is
close to 1 or 0.5 in deep NGS sequencing data; differences
only arise from errors and randomness in sequencing. In
reality, cell lines may have minor clones, are aneuploid or
are contaminated (contaminants), so we observe not only
frequencies far from 0.5 and 1, but also three or four nu-
cleotides at an SNP site (46,49). We can use such informa-
tion to estimate the genetic heterogeneity of asample.
The dominant clone is the major component of a sam-

ple; minor clones and contaminants are the minor compo-
nent. There are six informative genotype combinations of
the major and minor components that can be used to esti-
mate SNP heterogeneity ratios, based on the four observed
nucleotide frequency patterns (Table 1). An SNP site is in-
formative if it emits one of the four patterns. Subsequently,
the sample heterogeneity ratio is estimated from individual
SNP heterogeneity ratios by a statistical modeling approach
(see the ‘Materials and Methods’ section). Using the test
samples, we found that uncontaminated cell lines on av-
erage have 107 informative SNP sites, while contaminated
cell lines have a slightly higher value of 112. On average,
PDX and PDXOmodels have 156 and 111 informative SNP
sites, respectively, which reflects higher genetic heterogene-
ity and/or mouse contamination in PDX models.

Detection and quantification of contamination by ‘hetero-
geneity ratio’. We detect sample contamination by com-
bining three analyses. First, contaminated samples can have
high heterogeneity ratios, while uncontaminated samples do
not. In our test samples, 115 of 118 (97.5%) presumably un-
contaminated cell lines have heterogeneity ratios <2% and
all test samples have ratios <3% (Figure 1B). In contrast,
we observed high heterogeneity ratios for contaminated cell
lines; for example, an A-875 cell culture mixed with JEG-
3 cells had a heterogeneity ratio of 15.5% (Table 3). We
will later demonstrate that the heterogeneity ratio is propor-
tional to the contamination ratio (percentage of contami-
nants), and therefore is a good indicator of contamination.
Human tumors dissected from PDX models contain mouse
stroma, and indeed we see higher heterogeneity ratios in
PDX tumors (Figure 1B), caused by mouse contamination
(Figure 1C). PDXOs, as in vitro culture of PDXs, have sig-
nificantly smaller heterogeneity ratios due to much smaller,
and often only trace, amounts of mouse cells generally due
to the loss of mouse components in culture (Figure 1B).
Contamination is also indicated by a distinct right peak

in the probability density of SNP heterogeneity ratios for a
sample (Figure 2 and Supplementary Figures S2–S4). The
peak shifts right as contamination and heterogeneity ra-
tios increase, and sometimes splits into two peaks. The bi-
/trimodal distribution vanishes, or only marginally appears,
for uncontaminated cell lines or cell lines with very low con-
tamination ratios (<1%) and heterogeneity ratios (<2%).
Finally, we can directly detect contaminants by statistical

modeling that provides intuitive visualization and rigorous
probabilistic measurement (see the ‘Materials and Meth-
ods’ section, Figure 3A and Supplementary Figures S5–S7).
In 94 cell line samples each mixed with another cell line,
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Table 3. Authentication and contaminant detection of 22 cell line mixtures

No. of Contamination

Cell line mixturea
informative

SNPs
Heterogeneity

ratio (percentage)
Major component

inferredb
Minor component(contaminant)

inferredc
ratio

(percentage) P-valued

ME180:143B 119 6.54 ME180 (98.06%) 143B (97.09%) 7.01 5.01E 17
143B:ME180 135 3.24 143B (98.55%) ME180 (94.17%) 3.21 5.01E 17
JEG-3:A-875 104 1.63 JEG-3 (98.49%) A-875 (87.94%) 1.21 5.01E 13
A-875:JEG-3 93 15.50 A-875 (91.71%) JEG-3 (99.00%) 16.71 5.01E 17
HT3:C33A 115 3.54 HT3 (100%) C33A (97.06%) 3.41 5.01E 17
C33A:HT3 90 4.34 C33A (99.01%) HT3 (100%) 4.61 0
DOTC24510:CASKI 136 5.47 DOTC24510

(98.99%)
CASKI (93.97%) 5.21 5.01E−17

CASKI:DOTC24510 129 4.26 CASKI (98.98%) DOTC24510 (91.84%) 4.11 5.01E−17
HLE:HCC94 163 2.62 HLE (99.0%), HLF

(96.08%)
HCC94 (91.46%) 2.91 5.01E−17

HCC94:HLE 133 10.65 HCC94 (97.6%) HLE (96.63%),HLF (96.63%) 10.11 5.01E−17
NCIH1993:LS174T 141 3.97 NCIH1993 (98.05%) LS174T (95.12%), LS180

(95.12%), HM7 (94.63%)
4.21 5.01E−17

LS174T:NCIH1993 114 4.88 LS174T (99.02%),
LS180 (99.03%),
HM7 (98.54%)

NCIH1993 (97.06%) 4.71 5.01E−17

OSC19:SF763 152 7.03 OSC19 (98.08%) SF763 (96.15%) 5.71 5.01E−17
SF763:OSC19 133 3.35 SF763 (99.02%) OSC19 (90.15%) 2.91 2.51E−16
SW626:SJCRH30 155 11.67 SW626 (95.63%) SJCRH30 (98.54%) 13.21 5.01E−17
SJCRH30:SW626 88 1.79 SJCRH30 (98.55%) SW626 (94.2%) 2.01 1.58E−16
A-875:ME180 115 2.68 A-875 (98.56%) ME180 (95.67%) 2.31 5.01E−17
DOTC24510:CASKI 144 1.75 DOTC24510 (98.5%) CASKI (86%) 1.71 1.00E−15
OSC19:SF763 130 2.68 OSC19 (98.56%) SF763 (93.27%) 2.11 5.01E−17
NOZ:SW626 127 0.82 NOZ (97.56%) SW626 (82.93%) 0.71 3.98E−11
SNU739:MM1R 121 2.29 SNU739 (99.01%) MM1R (94.03%),MM1S

(94.03%)
1.71 5.01E−17

U251:SR 127 1.09 U251 (98.54%) SR (89.76%) 1.11 5.01E−17

a In the format of major cell line:minor/contaminating cell line.
bGenotype similarity shown in parentheses.
cChimeric genotype similarity shown in parentheses.
d Probability that the inferred minor component is wrong.

we always correctly inferred the minor contaminant cell line
when the heterogeneity ratio is 2% (Figure 3B). Accuracy
is reduced to 80% and 50% when the heterogeneity ra-
tio is 1–2% and<1%, respectively. For the eight missed sam-
ples, seven sampleswere characterized as clean and only one
was marked by the incorrect contaminating cell line (Sup-
plementary Table S1). It should be noted that such inference
is only feasible when the contaminating cell line also has a
known SNP fingerprint. We detected several contaminated
cell lines in our biobank; one example is cell line ‘G-292
clone A141B1’ that had a high heterogeneity ratio of 7.62%
(Figure 3C), and was contaminated by 6.21% OCI-AML-2
(Figure 3D).
After identifying the contaminating cell line, we can es-

timate the contamination ratio (i.e. percentage of the sec-
ond cell line) using a maximum-likelihood approach (see
the ‘Materials and Methods’ section). Simulation studies
show that the estimated contamination ratios are extremely
close to known ratios (Figure 3E). We observed a tight lin-
ear correlation between heterogeneity ratios and contam-
ination ratios (Figure 3F). Therefore, as stated above, the
heterogeneity ratio is a good estimator of contamination,
and is particularly useful when contaminants are not stan-
dard cell lines. Within contaminated samples, contaminants
contribute only a part (although this is sometimes the ma-
jority) of the genetic heterogeneity; consequently, contami-
nation ratios are generally smaller than corresponding het-
erogeneity ratios (Table 3, Supplementary Tables S1 and

S2), and the few outliers we observed were caused by data
processing methods.
In summary, the heterogeneity ratio, by its value and dis-

tribution, is a reliable contamination measure for human
samples. Cell line samples with a heterogeneity ratio of 2%
are highly likely to be contaminated, and when the contam-
inant is another cell line also with a known SNP fingerprint,
we can infer its identity and estimate the contamination ra-
tio with an unprecedented sensitivity of 1%, measured by
cell or DNA mix ratios (Tables 2 and 3).

Mouse tumormodel authentication by a special set of SNPs

We used a total of 199 mouse SNPs for authenticating
32 syngeneic mouse tumor models commonly used in pre-
clinical immunomodulatory drug development, including
4T1, A20, B16-BL6, B16-F0, B16-F1, B16-F10, C1498,
Colon26, CT26WT, E.G7-Ova, EL4, EMT6, H22, Hepa1-
6, J558, J774A1, JC, KLN205, L1210, L5178-R, LLC,
MBT2, MC38, MPC-11, Neuro-2a, P388D1, P815,Pan02,
Renca, RM1, S91 and WEHI164 (Supplementary Table
S6). Authentication of these models achieved 100% accu-
racy (data not shown). Below, we explain the authentication
protocol.
Most syngeneic models have a unique six-SNP sig-

nature. For example, 4T1 has the signature ‘TGGTGA’
at its six characteristic SNP sites across five chromo-
somes (namely 5 136026554, 1 91387260, 19 47898131,
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Figure 1. Cell line authentication and sample genetic heterogeneity. (A)
Genotype similarities for unrelated/mismatch, identical and closely related
cell line pairs. Genotype similarities are calculated for both uncontami-
nated and contaminated cell lines. Therefore, contaminated cell lines have
reduced genotype similarities to their uncontaminated counterparts. The
lowest genotype similarity is 91.7% between identical pairs, for an uncon-
taminated A-875 to a contaminated A-875 with 16.7% of JEG-3. (B)Het-
erogeneity ratios in 118 uncontaminated cell lines, 220 PDXmodels and 31
PDXOmodels. (C) Heterogeneity ratio is positively correlated with mouse
ratio in PDXmodels.

11 100695233, 12 110649884 and 11 69740416 in the for-
mat of chromosome location in the mouse reference
genome mm10). All other models have the signature ‘CTC-
GAG’. Therefore, a syngeneic model can be unequivo-
cally identified as 4T1 if we observe ‘TGGTGA’ at the
six SNP sites. It should be noted that all the six SNP
sites are heterozygous in 4T1, so we also observe the al-
ternative nucleotides, namely ‘CTCGAG’. However, for
non-4T1 models, the six SNP sites are all homozygous as
‘CTCGAG’.
There are two sets of models that are exceptions. The

first set is Colon26 and CT26WT, both of which are
mouse colon adenocarcinoma models originating from the
BALB/c mouse strain.Weuse the first signature ‘AAATAA’
to identify a model as one from this set, and then assign the
model as Colon26 if we observe ‘AGAACC’ for the second
signature, and as CT26WT if we observe ‘GTTGGC’ for the
third signature.
The second set is B16-BL6, B16-F0, B16-F1 and B16-

F10, all of which are mouse melanoma cell lines in the
C57BL/6 mouse strain, and which were all derived from
the B16 cell line. Specifically, B16 is the parental line of
B16-F0, which in turn is the parental line of B16-F1. B16-
F10 is the 10th serial passage of B16-F0 and is the parental
line of B16-BL6 (32). The four lines have high genetic sim-
ilarity. We first use a seven-SNP signature ‘GGAGACC’
to assign a test cell line into this group, and then assign
the cell line to B16-F0 by a second signature ‘GTGGTA’,
or to B16-F10 by a third signature ‘CACTCT’ or to B16-
BL6 by a fourth signature ‘TGAAAG’; if none of the three
signatures is observed, then the cell line is identified as
B16-F1.

Human–mouse interspecies contamination detection based on
divergent segments between two species
We compared human hg19 and mouse mm10 genomes, and
identified 108 100–300 bp segments such that each segment
significantly diverged (by insertion, deletion and pointmu-
tation) between human and mouse (31–97% sequence sim-
ilarities), yet has identical flanking sequences ensuring that
a common pair of primers can be readily designed (Supple-
mentary Table S7). After NGS sequencing, we canseparate
human and mouse reads, calculate mouse ratios for all seg-
ments and take the median of these ratios as the mouse ra-
tio in a human–mouse mixed sample. This method demon-
strated extremely high accuracy in a set of benchmark sam-
ples in which mouse and human DNA was mixed by serial
dilution (Figure 4A). We further prepared a second set of
serial dilution samples with low mouse ratios, and demon-
strated that the method can reliably detect mouse contami-
nation at 0.1% (Supplementary Table S8).
We also developed methods of estimating mousecontent

from RNA-seq and WES data (see the ‘Materials and Meth-
ods’ section). We compared three methods in estimating
mouse ratios in 220 PDX and 31 PDXO models (Figure
4B and C). DNA (for WES and the deep NGS sequenc-
ing) and RNA (for RNA-seq) were extracted and sequenced
from the same sample of a model to remove sample vari-
ance. PDXO models generally have low mouse content. In
PDX models, mouse ratios accurately estimated from deep
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Figure 2. The heterogeneity ratio can be used to detect and quantify contamination. (A–D) Serial mixes of cell lines MV-4-11 (MV411) and LNCaP clone
FGC (LNCAPCLONEFGC) with cell ratios of 5%, 2.5%, 1.25% and 0.625% for the latter; (E) pure LNCaP clone FGC cell line; and (F) pure MV-4-
11 cell line. Each tick above the horizontal axis represents an informative SNP site with corresponding SNP heterogeneity ratio. Probability density was
estimated by assuming a two/three-component Gaussian mixture. Sample serial number is labeled in the top-right box with the major component cell line
in parentheses. Sample heterogeneity ratio is shownunderneath.
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Figure3. Contaminationdetection,contaminantinferenceandcontaminationratioestimation.(A)Sample19R58129isMV-4-11mixedwithminorcon-
taminating cell line LNCaP clone FGC (LNCAPCLONEFGC). LNCAPCLONEFGCwas correctly identified as the contaminant (P-value 5.01E 17)
withacontamination ratioof1.41%.LNCaP-C4-2 (C42) andLNCAPCLONEFGCwerebothderived fromLNCaPand sharehighgenetic identity (32).
In the quantile–quantile plot, each dot is a reference cell line; theoretical and sample quantileswere calculated fromabeta distribution fitted to genotype
similaritiesbetweenMV-4-11and1055referencecell lines.The99%confidencebandisshaded. (B)Accuracyof inferring thecontaminatingsecondcell
line in acell lineunderdifferentheterogeneity ratios.A total of 94cell linesampleswith knowncontaminating secondcell linewere tested; sampleswere
binnedbyheterogeneity ratio. (C)Cell line ‘G-292 cloneA141B1’ had a sampleheterogeneity ratio of 7.62%with adistinct right peak in theprobability
density of SNP heterogeneity ratios, indicating it was contaminated. (D) OCI-AML-2 was inferred as the contaminant (P-value 1.58E 07) in cell line
‘G-292cloneA141B1’withacontaminationratioof6.21%.(E)Near-perfectcorrelationbetweenestimatedandknowncontaminationratiosinsimulated
cell linemixtures. (F)High correlation between heterogeneity ratios and contamination ratios for cell line sampleswith known contamination.
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Figure 4. Estimation of mouse ratio in human–mouse mixtures. (A) Accurate estimation of mouse ratio by the deep NGS sequencing in a serial dilution
of human–mouse DNA mixtures with mouse ratios of 90%, 80%, 70%, 50%, 30%, 20%, 10%, 7%, 5% and 0%. (B, C) Mouse ratios estimated in 220 PDX
and 31 PDXO models by three approaches, assayed on the same sample for each model. (D) A quadratic relationship between mouse ratios estimated by
the deep NGS sequencing and WES in 220 PDXmodels.

NGS sequencing data are the highest, followed by RNA-
seq and then WES. This observed lower ratio for WES is
likely due to the exon-capture kit used in WES, which was
designed to enrich human exons and had low hybridiza-
tion affinity to homologous mouse exons. RNA-seq used
a polyA-enrichment protocol with no species preference;
however, gene expression has great temporospatial variabil-
ity in human tumor and mouse stroma of PDX. Indeed, we
observed a very strong quadratic relationship for mouse ra-
tios between the deep NGS sequencing data and WES data
(R 0.96, Figure 4D), but a much weaker linear correlation
between the deep sequencing data and RNA-seq data (R
0.62).

Mycoplasma detection using a specially designed SNP set
Mycoplasma contamination is a major concern in labora-
tory cell and tissue culture, impacting experiment conduc-
tion and causing false positive/negative errors. There are
several ways to detect mycoplasma contamination, includ-
ing PCR, enzymatic, indirect DNA DAPI staining and mi-
crobial culture methods. The PCR method uses oligonu-

cleotide primers to amplify conserved 16S rRNA regions,
and was shown to be most sensitive (50). In our NGS as-
say, we used one such pair of universal primers to detect all
mycoplasma species (51), which produce a 425-bp amplicon
easily identified from the high-depth sequencingdata.
In addition, we used 11 pairs of species-specific primers,

with proven effectiveness, to detect 11 common my-
coplasma species, including Acholeplasma laidlawii, My-
coplasma arginini,M. fermentans,M. genitalium,M. homi-
nis, M. hyorhinis, M. orale, M. pirum, M. pneumoniae, M.
salivarium andUreaplasmaurealyticum (51). These primers
generate amplicons ranging from 300 to 335 bp, which are
also the perfect size for NGS detection. It is possible that a
sample can be contaminated by more than one mycoplasma
species, which can be discerned by our NGS assay. My-
coplasma can be eradicated by antibiotics, including BM-
Cyclin, ciprofloxacin and other removal agents (51). Treated
samples can be routinely checked by the NGS assay to
ensure that they are mycoplasma free. We identified one
mycoplasma-contaminated cell line in our biobank by the
NGS assay and subsequently validated the result by a my-
coplasma detection kit (Supplementary Table S9).
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Figure 5. Inferred population structures in PDX models. (A) Four hun-
dred twenty-three PDXs derived from East Asian patients. (B) Six hundred
thirty-four PDXs derived from Western patients. The three reference pop-
ulations from the International HapMap Project are CHB, YRI and CEU
(41).

Population structure analysis and gender determination
Individuals carry genetic variants, including SNPs. Related
individuals share some of these variants and the overlap-
ping percentage is a measurement of genetic similarity. A
collection of population-specific SNPs has been identified
by international collaborations such as the International
HapMap Project (41) and the 1000 Genomes Project Con-
sortium (52). We can perform population structure analysis
using full or part of these SNPs, so that an individual with
unknown ancestry can be inferred and the proportion of
each reference population is deduced.
Of the 200 SNPs used for human sample authentica-

tion, 132 were characterized by the International HapMap
Project. We added another 13 SNPs, making a total of 145
SNPs in HapMap (release 3). These SNPs, by design, are
all located on 22 autosomes and are sufficiently far enough
away from each other to ensure very limited linkage dis-
equilibrium. Furthermore, their MAFs are close to 0.5 in
three reference populations (CHB, YRI and CEU; see the
‘Materials and Methods’ section). Therefore, they are ideal
for inferring population structure. To evaluate the perfor-
mance, we used fastSTRUCTURE (53) to analyze the three
reference populations. Indeed, all 406 individuals were un-
ambiguously assigned to the correct reference populations
with high probabilities (Supplementary Table S10).
Weprofiled 423 PDXmodels derived from East Asian pa-

tients and 634 PDX models derived from Western patients
in the United States. The analysis showed that all the East
Asian PDX models have dominant CHB composition with
only one exception. The majority of the Western PDX mod-
els have predominantly CEU composition; the rest have ma-
jor CHB or YRI compositions, or are mixtures of two or
three of the reference populations (Figure 5).

Toinfer gender of human samples, we amplified three seg-
ments (109, 137 and 189 bp) on the Y chromosome (Sup-
plementary Table S11). The three short segments have no
homologous sequences in autosomes or X chromosome.
Therefore, a non-trivial amplification of them, defined as
the total number of reads >300, indicated a male sample.
When tested on 541 PDX samples, the NGS assay correctly
inferred genders for 528 samples, while the other 13 male
samples were erroneously labeled as female due to segment
deletion or total loss of the Y chromosome (Supplementary
Table S12).

DISCUSSION
There are three levels of biosample authentication. Level 1
authentication matches a sample to a reference (e.g. stan-
dard cancer cell lines). Conventional STR and SNP as-
says largely used genotype-based Tanabe–Masters algo-
rithm and its variations (8,54,55). STR assays generate ana-
log signals for a dozen markers, while SNP assays often
genotype many more SNPs. Therefore, higher similarity
thresholds are often used by SNP assays to identify two
samples as a match (3,8). However, the matching power of
conventional assays can be severely compromised for con-
taminated samples even with 100 SNPs (27). Our method
performed high-depth (3000 ) sequencing of 200 SNP sites
for human samples, and showed 100% accuracy in identi-
fying a sample or the major component of contaminated
samples, which is a significant improvement over the con-
ventional STR/SNP assays.
Level 2 authentication detects contamination in biosam-

ples. The sensitivity for detecting contamination in cell lines
is 5–10% for STR assays and 3–5% for SNP assays.How-
ever, as previously stated, performance of these assays can
be rather unstable. Our method consistently reaches 2% sen-
sitivity when using only the heterogeneity ratio, by both its
value and distinct bi-/trimodal distribution. The sensitivity
can reach 1% if the contaminant is in a library of refer-
ence samples with an SNP fingerprint. Such sensitivity vir-
tually reaches the theoretic detection limit, because uncon-
taminated cell lines, due to multiclonality and sequencing
errors, exhibit a comparable level of genetic heterogeneity
to cell line samples with 1%contamination.
Level 3 authentication identifies the contaminant in a

contaminated sample, which is difficult to achieve, but is
made practically possible by our reported method. For ex-
ample, PANC-1 is the contaminant in a cell mix of 97%
RT4 and 3% PANC-1 cells. Level 3 capability is avail-
able within our method, but not in conventional STR and
SNP assays. Cross-contamination of cell lines is common
in biobanks. The composition of a contaminated culture
changes over time due to different growth rates of cell lines.
Cell lines also differ in genomics such as gene mutations
and may respond differently to drug treatment, causing er-
roneous results in drug screening. We constructed an SNP
fingerprint library for over 1000 cancer cell lines, enabling
a contaminating cell line to be unambiguously identified.
Furthermore, we can accurately estimate the contamina-
tion ratio. Alongside checking cell line quality, this capac-
ity can have other uses such as monitoring the dynamic
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composition of two cell lines under biological or chemical
interference.
For cell line authentication, it is normally sufficient to

identify the cell line and determine whether it is contam-
inated, which can be achieved by conventional STR as-
says due to them being readily available. As detailed above,
such assays suffer from their limited ability to discern con-
tamination. Their sensitivity also depends greatly on the
threshold for calling matches, which cell lines are within
a mix, subjective determination of STR bands and the
number of loci. When there is interspecies contamination,
such as PDX tumors in which human tumor cells are
mixed with murine stromal cells, STR assays are prob-
lematic in detecting mouse cell contamination in human
cells. All of these problems are satisfactorily solved by
our NGS method. Due to its high-throughput nature,
our method is more suitable for use by large biobanks
with multiple types of biospecimens, including cell lines,
organoids, PDX models, syngeneic mouse models, human
samples, etc.
Besides intraspecies contamination, our method is able

to accurately detect and quantify interspecies contamina-
tion between human and mouse. Here, we do not use SNPs,
instead employing 108 homologous DNA segments that are
diverged between the two species but have identical flanking
nucleotide sequences. This allows common primers to be
designed for unbiased amplification of human and mouse
DNA segments. This approach showed perfect performance
in a serial dilution of mouse–human DNA mixture bench-
mark samples. The homology-based principle can be used
for detecting other interspecies contaminations. We used
the amplification of three Y-chromosome segments to in-
fer gender of human sample, which exhibited complete ac-
curacy except for samples with partial or total loss of Y
chromosome. The problem can be largely alleviated or re-
moved for samples with only partial loss of Y chromosome
by amplifying more segments that spread across the Y chro-
mosome. For example, amplicons can be designed around
these Y-chromosome sites: 2822023, 7235632, 21765821
and 28479069.
The power of our method comes from several novel fea-

tures. First, deep NGS sequencing was used to obtain both
genotype and nucleotide frequency of SNPs. Conventional
STR and SNP assays only profile SNP genotypes. Second,
our method performs additional targeted sequencing for de-
tecting mycoplasma contamination and estimating mouse–
human mix ratios. Third, a suite of statistical models and al-
gorithms was devised to exploit deep NGS sequencing data,
making the authentication process automatic, robust and
objective. Finally, DNA barcode technology is used to en-
able parallel sequencing of 100–200 samples simultaneously
that drastically reduces cost.
In conclusion, we have developed a high-throughput low-

cost method that can be routinely used by biobanks to
maintain authentic and high-quality samples. Themethod
can be broadly adapted for samples from other species and
eventhemicrobiome,andcanbe implementedonanyNGS
sequencing platform. With NGS technology becoming a
standard platform for different applications, our method
couldpotentiallybecomethefutureassayofchoiceforsam-
ple authentication and qualitycontrols.
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